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Abstract

Human image synthesis has extensive practical applica-

tions e.g. person re-identification and data augmentation

for human pose estimation. However, it is much more chal-

lenging than rigid object synthesis, e.g. cars and chairs, due

to the variability of human posture. In this paper, we pro-

pose a pose-based human image synthesis method which

can keep the human posture unchanged in novel viewpoints.

Furthermore, we adopt multistage adversarial losses sepa-

rately for the foreground and background generation, which

fully exploits the multi-modal characteristics of generative

loss to generate more realistic looking images. We perform

extensive experiments on the Human3.6M dataset and ver-

ify the effectiveness of each stage of our method. The gen-

erated human images not only keep the same pose as the

input image, but also have clear detailed foreground and

background. The quantitative comparison results illustrate

that our approach achieves much better results than several

state-of-the-art methods.

1. Introduction

Synthesizing a novel view image from a single image is

an important and challenging problem in computer vision.

Particularly, human view synthesis which plays important

roles in human understanding has extensive practical appli-

cations. For example, human view synthesis can effectively

solve the cross-view problems, e.g. cross-view action recog-

nition [26, 7, 12] and cross-view person re-identification

[28, 2]. Multiview human synthesis can be used as a means

of data augmentation for human pose estimation in [22].

Novel view synthesis is very challenging due to the need

of inferring unseen content from a single image. Geometry-

based methods [1, 8, 31] generate novel view images by
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Figure 1. Human image synthesis by our proposed method and

three state-of-the-art methods: cGANs [16], VSA [25], PG2[13].

Our generated images in the green dashed box keep the same pose

with the groundtruth images, while the other methods can not al-

ways obtain correct poses. Moreover, our method generates much

better foreground and background images than the others.

reconstructing 3D object, while transformation-based meth-

ods [19, 27, 32] directly learn to model the transformation

between different perspectives of object. Recently, there oc-

curred a lot of work on image generation and synthesis by

means of variational autoencoders (VAE) [10] and gener-

ative adversarial networks (GANs) [3], which have shown

impressive results [21, 20, 33, 11].

Generally, the above methods are used to synthesize

rigid objects, e.g. faces, cars and chairs, which have the

characteristics of shape invariance and symmetry. Gener-

ating human images is much more challenging than synthe-

sizing rigid objects, due to the variability of human posture.

Taking [29] for example, although this work can generate

multi-view human images from a single image, it can not

keep the human posture unchanged.

In this paper, we propose a pose-based human image
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Figure 2. The overall pipeline of our multistage approach which contains three transformer networks for three stages. In the first stage, the

pose transformer network synthesizes a novel view 2D pose. Then, the foreground transformer network synthesizes the target foreground

image in the second stage. Finally, the background transformer network generates the target image. fHG and fCRF donate the stacked

hourglass networks [18] and the CRF-RNN [30] for pose estimation from image and foreground segmentation, respectively.

synthesis method (shown in Fig. 2), which keeps human

posture unchanged during generating novel view images

from a single image. Fig. 2 shows the procedure of hu-

man image synthesis, which contains three transformer net-

works for three stages. (1) In the first stage, we propose

a pose transformer network which can synthesize 2D tar-

get pose P ∗

t of other perspectives from the condition pose

Ps corresponding to the condition image Is. Instead of fo-

cusing on 2D pose estimation from image in this work, we

adopt the stacked hourglass networks [18] to estimate the

condition pose. With the low-dimensional characteristics

of human pose, the pose transformation between different

perspectives can be easily learned. (2) In the second stage,

we extract human foreground Fs from condition image with

the segmentation method CRF-RNN [30], and then propose

a foreground transformer network to synthesize the target

human foreground F ∗

t with the 2D poses {Ps, P
∗

t } and con-

dition human foreground Fs. Here a adversarial loss is used

to improve the image quality. 3) In the third stage, a back-

ground transformer network is proposed to generate target

full image I∗t with the condition image Is and the generated

foreground image F ∗

t as the input. Two adversarial losses

separately for the foreground image and the full image, e.g.

foreground adversarial loss and global adversarial loss, are

imposed to generate clear and detailed images.

Fig. 1 shows the comparison results between our method

and three state-of-the-art approaches [16, 25, 13]. We can

see that our generated images have the same pose with the

groundtruth images, while the results of other methods can

not always obtain correct poses. Moreover, our images

show much better foreground and background images than

the other methods.

The main contributions of this paper are summarized as

follows:

• We propose a pose-based human image synthesis

method which can keep the human posture unchanged

in novel viewpoints, which is very difficult for current

state-of-the-art methods.

• We propose a multistage adversarial loss approach

which generates high-quality foreground and back-

ground images in novel viewpoints.

• Our method synthesizes much better novel view hu-

man images than several state-of-the-art methods on

the Human3.6M dataset.

2. Related Work

In this section, we briefly review the existing literature

that closely relates to the proposed method.

View synthesis There have been amounts of work

proposed for novel view synthesis, which can be catego-

rized into two broad classes: geometry-based methods and

direct transformation methods. Geometry-based methods

[1, 8, 31] generate novel view images by reconstructing 3D

object, while transformation-based methods [19, 27, 32] di-

rectly learn to model the transformation between different

perspectives. Ji et al. [6] use convolutional neural networks

to synthesize a middle view of two images. Tatarchenko

et al. [24] propose a network to infer 3D representation

from an arbitrary viewpoint. Park et al. [19] first predict

the parts of the geometry visible in both the input and novel

views, and then generate a novel image. Zhou et al. [32]

learn appearance flows for synthesizing novel views. These

methods are generally designed to synthesize rigid objects,

which do not work well for human image synthesis.

Pose-based human image synthesis To keep human

posture correct in image generation and synthesis, mod-

elling human pose is a very natural choice. Villegas et

al. [25] predict future pose sequence for generating long-

term future frames. This method works very well for suc-

cessive frames due to their small changes, but fails to gen-

erate human images of large viewpoint changes. The most

similar work to ours is [13] which proposes a pose guided

person generation network (PG2) to synthesize person im-

ages in a coarse-to-fine way. It can be seen that our work

aims at multiview human synthesis which needs to generate
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poses in other viewpoints, while [13] uses predetermined

pose. Our proposed multistage adversarial losses separately

for the foreground and the background achieve much better

results than the coarse-to-fine method in [13]. Please refer

to Fig. 6 and Table 1 for the comparison results.

Adversarial loss for image generation Adversarial

loss is used widely in image generation due to its multi-

modal characteristics, which overcomes the average pre-

diction problem caused by mean square error. Mathieu et

al. [15] use generative adversarial training to predict the

sharp frames. Mirza et al. [16] propose conditional GANs

(cGANs) for image-to-image translation tasks. In this pa-

per, we adopt multistage adversarial losses to optimize the

procedure of image generation.

3. Model Architecture

Human image synthesis is very challenging due to the

variability of human posture. In this paper, we propose a

pose-based human image synthesis method which contains

three transformer networks for three stages. Fig. 2 illus-

trates these three networks: pose transformer network, fore-

ground transformer network and background transformer

network. In this section, we will introduce these networks

in detail.

3.1. Pose Transformer Network

Inspired by the deep feedforward network proposed for

inferring 3D joints from 2D ground truth in [14], we pro-

pose a pose transformer network (see Fig. 3). Given 2D

pose joints and a rotation angle θ, our goal is to estimate 2D

pose of other perspective. The function of the pose trans-

former network Gp is defined as follows:

P ∗

t = Gp(Ps, θ) (1)

where P ∗

t is the predicted target pose, and Ps is the con-

dition 2D pose of the input image. The pose transformer

network Gp has seven linear layers and an embedding lay-

er. The first linear layer encodes the input pose joints into a

1024-dim vector and the embedding layer transforms the ro-

tation angle θ into a 512-dim vector. These two vectors will

be concatenated as the input to another two residual blocks.

Figure 3. The architecture of the pose transformer network.

Figure 4. The architecture of the foreground transformer network.

The last layer predicts the target pose. In Gp, all the linear

layers have 1024 hidden nodes, which are followed by batch

normalization [4] and Rectified Linear Units (RELUs) [17]

except the last linear layer. It should be noted that we do

not focus on pose estimation from image in this work, and

directly use the stacked hourglass networks (fHG) [18] to

estimate the condition pose Ps from the image Is.

We train the pose transformer network with the ℓ2 re-

gression loss:

L1 =

N
∑

i

∥

∥

∥
P ∗

t
i − Pt

i
∥

∥

∥

2

2

(2)

where Pt
i is the groundtruth of joint i and P ∗

t
i is the pre-

dicted location of joint i. After estimating the target pose,

we start to synthesize the human image.

3.2. Foreground Transformer Network

Given the predicted target pose, we need to synthesize

the corresponding human image that has the same appear-

ance with the input image. Inspired by [25] and [23], we

propose a foreground transformer network for human fore-

ground generation. It comprises of an image encoder f
fg
img ,

a pose encoder ffg
pose , an image decoder f

fg
dec and a dis-

criminator Dfg , which is shown in Fig. 4. The network

synthesizes the target human foreground F ∗

t by inferring

the transformation from the condition pose Ps to the target

pose P ∗

t and transferring the condition foreground image Fs

to target foreground based on this pose transformation:

F ∗

t = f
fg
dec(f

fg
pose(P

∗

t )− ffg
pose(Ps) + f

fg
img(Fs)) (3)

where Fs is the segmented condition human foreground im-

age which is predicted by CRF-RNN [30].

The foreground transformer network can generate multi-

view foreground images that have the same appearance and

posture with the input image. In this network , the condition

pose Ps and target pose P ∗

t are encoded into the pose fea-

tures by the encoder ffg
pose. A subtraction operation between

the target pose feature and the condition pose feature is used

to model the pose transformation. The image encoder f
fg
img
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extracts the appearance feature. Finally, the sum of image

feature and the pose transformation feature is decoded to

the target foreground F ∗

t by the image decoder f
fg
dec. The

skip connections between the pose encoder ffg
pose and the

image decoder f
fg
dec propagate the pose features, which can

ensure the synthesized human image to have the same pose

with the condition input image. It should be mentioned that

although the target pose and the condition pose are encoded

by the same encoder ffg
pose, there are no skip connection-

s when encoding the condition pose (see Fig. 4). We al-

so add skip connections between image encoder and image

decoder to make sure that the generated foreground has the

same appearance with the input image.

In foreground transformer network, we use two-

dimensional skeleton image as the input to the pose encoder

instead of 2D pose joints. Particularly, we assign different

values to different parts in this skeleton image, e.g. the val-

ue of the left leg is (0, 255, 255) and the right leg is (255,

0, 255), which can represent the high-level structure of the

human pose well. All the encoders and decoder in this net-

work adopt convolutional networks. Due to the multi-modal

characteristics of generative adversarial networks [3], we

use the adversarial loss to improve the quality of generat-

ed foreground images. The training loss of this network is

defined as follows:

L2 = αfL
2

fg + βfL
2

bg + L2

gen (4)

where L2

fg and L2

bg are the ℓ1 loss for the foreground and the

background of the synthesized image F ∗

t , and L2

gen is the

term in the adversarial loss that makes the model to generate

real images. αf , βf are the weighting coefficients. In our

experiments, βf is smaller than αf due to the small changes

in the background.
The L2

fgand L2

bg are defined as follows:

L2

fg = ‖Ft ⊙Mt − F
∗

t ⊙Mt‖1

=
1

∑

M
i,j
t =1

M
i,j
t

∑

i,j

∣

∣

∣
(Ft

i,j − F
∗

t
i,j
)×Mt

i,j
∣

∣

∣
(5)

L2

bg = ‖Ft ⊙ (1−Mt)− F
∗

t ⊙ (1−Mt)‖1

=
1

∑

M
i,j
t =0

(1−M
i,j
t )

∑

i,j

∣

∣

∣
(Ft

i,j − F
∗

t
i,j
)× (1−Mt

i,j)
∣

∣

∣

(6)

where Ft is the groundtruth of the target foreground image,

and Mt is the foreground mask which is predicted from the

groundtruth image It by CRF-RNN [30]. The mask Mt

is only needed during training. Here ⊙ denotes element

multiplication.

The adversarial term L2

gen is defined by:

L2

gen = − log(Dfg([F ∗

t , P
∗

t ])) (7)

where F ∗

t , P
∗

t are the predicted foreground image and 2D

target pose, and Dfg(.) is the discriminator network in ad-

versarial loss. The discriminator loss is defined as follows:

L2

D = − log(Dfg([Ft, P
∗

t ]))

− log(1−Dfg([F ∗

t , P
∗

t ])) (8)

3.3. Background Transformer Network

We have synthesized the foreground image, and there is

no clear background for the synthesized image. In this sec-

tion, we propose a background transformer network to gen-

erate the target image with clear background.

The background transformer network is illustrated in

Fig. 5, which consists of a foreground encoder f
bg
fg , a con-

dition image encoder f
bg
img and a image decoder f

bg
dec. The

input of this network is the condition image Is and the syn-

thesized foreground image F ∗

t . The condition image con-

tains both the background information and the character-

istics of human appearance, e.g. color, texture, which are

extracted by the condition image encoder f
bg
img . The fore-

ground encoder f
bg
fg maps the target foreground F ∗

s to the

target human feature. Then the concatenation of the out-

puts of the image encoder f
bg
img and the foreground encoder

f
bg
fg is fed into the image decoder f

bg
dec. Similar to the fore-

ground transformer network, we utilize the skip connection

between the image encoder, the foreground encoder and the

image decoder, which can help to recover more details.

Due to the complexity of image background, generating

a high quality image becomes more difficult and challeng-

ing. So we adopt two adversarial losses to allow our model

to generate realistic looking images. They are a foreground

adversarial loss and a global adversarial loss, which have

a foreground discriminator network D
bg
fg and a global dis-

criminator network Dbg , respectively. The D
bg
fg takes the

foreground of the generated target image I∗t and the target

pose P ∗

t as the inputs, which focuses on the foreground gen-

eration. The Dbg takes the generated image I∗t as input,

which optimizes the quality of the full image.

Figure 5. The architecture of the background transformer network.
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This network is trained with the following loss function:

L3 = αbL
3

fg + βbL
3

bg + L3

genfg
+ L3

gen (9)

where L3

fg and L3

bg are the ℓ1 loss for the foreground and

the background of the generated target image I∗t , and αb,

βb are the weighting terms. The L3

fg and L3

bg have the same

formula as the Eqn. 5 and Eqn. 6, except replacing Ft, F
∗

t

with It, I
∗

t . The two adversarial terms L3

genfg
and L3

gen are

defined by:

L3

genfg
= − log(Dbg

fg([I
∗

t ⊙Mt, P
∗

t ])) (10)

L3

gen = − log(Dbg(I∗t )) (11)

and the discriminator losses of D
bg
fg and Dbg are defined as

follows:

L3

Dfg
= − log(Dbg

fg([It ⊙Mt, P
∗

t ]))

− log(1−D
bg
fg([I

∗

t ⊙Mt, P
∗

t ])) (12)

L3

D = − log(Dbg(It))− log(1−Dbg(I∗t )) (13)

4. Experiments

4.1. Experimental Settings

To verify the effectiveness of our multistage approach,

we perform extensive experiments on the Human3.6M

dataset [5]. This dataset is collected from 4 cameras simul-

taneously, which contains the images and the poses of 11

subjects. Each subject performs 15 kinds of actions. In our

experiments, 3 actions of each subject are used as the test

dataset and the rest of the data are used to train the mod-

el. The size of the input image is set to 224 × 224 × 3.

For the pose transformer network, we train 15 epochs with

a minibatch of size 500. The initial learning rate is set to

0.001. For foreground transformer network and background

transformer network, we train 10 epochs with a minibatch

of size 40 and an initial learning rate of 0.0001. We set

αf = αb = 100 and βf = βb = 50. All the networks

are optimized using the ADAM optimizer [9]. For the base-

line models below, the training parameters are same as our

proposed model.

We visualize the synthesized images, and compare our

model with the other three state-of-the-art methods [16, 25,

13]. In quantitative comparison, we adopt the structural

similarity index measure (SSIM) and the peak signal to

noise ratio (PSNR) to measure the quality of the generated

image. SSIM measures image similarity from three aspects

of brightness, contrast and structure. The range of SSIM is

[0, 1], and large SSIM value indicates high structural simi-

larity. PSNR is one of the most widely used index of image

objective evaluation. The higher the PSNR value,the better

the image quality.

Methods SSIM PSNR

Mirza et al. [16] (cGANs) 0.52 17.05

Villegas et al. [25] (VSA) 0.54 17.52

Ma et al. [13] (PG2) 0.60 19.19

Ours 0.72 20.62

Table 1. The comparison results between our method and the other

state-of-the-art methods.

4.2. Experimental Results

We compare our proposed method with the other three

state-of-the-art methods, e.g. Mirza et al. [16] (cGANs),

Villegas et al. [25] (VSA) and Ma et al. [13] (PG2), and

report their SSIM and PSNR values in Table 1. We can

see that our proposed multistage approach achieves the best

performance with SSIM (0.72) and PSNR (20.62).

We also visualize the generated images of the compared

methods and our method in Fig. 6. It can be seen that

although VSA [25] and PG2 [13] are two pose-based im-

age generation methods, they still can not keep the pose

correct in novel viewpoint. Particularly, all the compared

methods can not recover the arm pose. Due to the large

viewpoint changes, they all generate distorted background.

Our method achieves the best results in the seventh column,

which keeps human pose the same as the input image and

generates clear foreground and background images. These

results demonstrate the effectiveness of our multistage ad-

versarial losses approach.

4.3. Model Analysis

We analyze the proposed foreground network and back-

ground network by comparing them with several variants.

The comparison results demonstrate their effectiveness.

Moreover, we perform multiview human image synthesis

to show the generalization ability of our model. We also

explore the role of human pose in novel view synthesis.

4.3.1 Analysis of Foreground Network

There are three key ingredients in the proposed foreground

transformer network: skip connection (Unet), pose encoder

(Pose) and generative loss (GAN). To analyze the role of

each component, we compare it with several combinations

of these components, e.g. Unet+GAN and Unet+Pose.

Unet This generator only has an U-net architecture,

which consists of an image encoder f
fg
img , an image decoder

f
fg
dev and several skip connections between them.

Unet+GAN It adds a discriminator network Dfg to the

Unet. This discriminator only takes images as input. The

architecture of Unet+GAN is similar to Fig. 4 but without

the pose encoder.
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Input cGANs[16] VSA[25] PG2[13] FD+BD GD FD+GD

(Ours)

GT

Figure 6. Visualization of the synthesized images from three state-of-the-art methods, two baselines and our model. Our method achieves

the best results with clear foreground and background.

Unet+Pose It dose not consist of the discriminator net-

work Dfg compared to Fig. 4.

EnDe+Pose+GAN EnDe denotes the encoder-decoder

architecture. This model is similar to Fig. 4 but without

skip connections between the encoders and the decoder.

Unet+Pose+GAN (Ours) It denotes our proposed fore-

ground transformer network.

We compare our foreground transformer network with

the above baseline networks. Table 2 shows the SSIM and

PSNR values and Fig. 7 visualizes the generated images.

Compared with Unet, Unet+GAN and EnDe+Pose+GAN,

our model Unet+Pose+GAN achieves better SSIM and P-

SNR values, which illustrates the importance of pose en-

coder and skip connections in foreground transformer net-

Methods SSIM PSNR

Foreground

Unet 0.77 20.49

Unet+GAN 0.73 19.39

Unet+Pose 0.82 22.57

EnDe+Pose+GAN 0.75 19.81

Unet+Pose+GAN (Ours) 0.81 22.10

Background

FD+BD 0.67 19.70

GD 0.65 19.45

FD+GD (Ours) 0.72 20.62

Table 2. The comparison results between several variants and our

transformer networks for the foreground and background.

work. The generated images of Unet, Unet+GAN and

EnDe+Pose+GAN in Fig. 7, which can not keep the pose

correct in novel viewpoint and particularly can not recov-

er the arm pose, verify the importance of each component

in our model again. It should be noted that although Un-

et+Pose performs better than our model in terms of PSNR

and SSIM (0.82 and 22.57 vs. 0.81 and 22.10), it can not re-

cover clear details in the generated images. We can see that

Unet+Pose generally generates blurred foreground and loss-

es details in human back in Fig. 7. It is mainly caused by

the missing of adversarial loss. Our foreground transformer

network with Unet+Pose+GAN achieves the best visual re-

sults compared with the groundtruth in Fig. 7.

4.3.2 Analysis of Background Network

In the proposed background transformer network, we adopt

two discriminator networks for the foreground and the full

image, respectively. To verify the effectiveness of this ar-

chitecture, we compare it with another two methods.

FD+BD It denotes that we use two discriminator net-

works for the foreground and the background, respectively.

We name them as foreground discriminator (FD) and back-

ground discriminator (BD).

GD It only uses a discriminator network for the full

image, which is called global discriminator (GD).

FD+GD (Ours) It is our model that is illustrated in

Section 3.3.

Table 2 shows the SSIM and PSNR values of the two

baselines and our model. The SSIM and PSNR of GD are
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Input Unet Unet+GAN Unet+Pose EnDe+Pose+GAN Unet+Pose+GAN

(Ours)

GT

Figure 7. Visualization of the synthesized images from four foreground baselines and our foreground transformer network.

0.65 and 19.45. With two discriminator networks, FD+BD

increases the SSIM and PSNR to 0.67 and 19.70. Our model

(FD+GD) achieves the best performance with SSIM(0.72)

and PSNR(20.62).

Fig. 6 shows the generated images of GD, FD+BD and

FD+GD. We can see that the backgrounds generated by

FD+BD and GD are easily distorted, e.g. the red circle ar-

eas. Our proposed network achieves the best results which

have clear foreground and background with less noises.

4.3.3 Pose Analysis

We explore the role of 2D human pose in our model. In-

stead of modelling the complete human pose, we input sev-

eral parts of human pose into the proposed networks, e.g.

arms, legs and their combinations. The generated images

are showed in Fig. 8. We can see that our model can gen-

erate human body appearances corresponding to these pose

parts, which demonstrates that modelling pose in our model

is vital for human image generation.

4.3.4 Multiview Synthesis

We train our networks on the Human3.6M dataset which

is collected from 4 cameras/viewpoints. However, our pro-

posed model can synthesize images of more perspectives.

In the experiments, we generate multiview images from a

single image at intervals of 45 degrees. The results are

showed in Fig. 9. We can see that our proposed method

can generate high-quality multiview human images. More

importantly, these images all keep correct poses, which is

very difficult for the other state-of-the-art methods. We can

Target Pose Foreground

Generated

GT

Figure 8. Images generated by inputting the parts of human pose

into our proposed networks, e.g. arms, legs and their combinations.

see that the same backgrounds are shown for some different

views. So there is a limitation for the background trans-

former network. It cannot synthesize a background that is

not visible in the original image.

4.3.5 Failure Case

There are several failure cases in our experiments, which

are shown in Fig. 10. One case is the occlusion between

body parts, which makes our model very difficult to recover
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Figure 9. Multiview human images generated by our model.

Input Condition Pose Ours GT Target Pose

Figure 10. Two failure cases of our model.

the occluded appearance. The first row in Fig. 10 shows

this case, and the appearance of the right waist has some

errors. The other case is the depth missing of 2D human

pose, which leads to depth disorder of body parts. The sec-

ond row in Fig. 10 shows this case. The hands should be

behind the back, while our model puts the hands in front.

4.4. Detailed Network Architecture

The detailed architectures of encoders ffg
pose, f

fg
img , f

bg
fg

and f
bg
img are provided in Table 3. Each convolution lay-

er is followed by Batch Normalization and RELUs in these

encoders. Table 4 shows the architectures of decoders f
fg
dec

and f
bg
dec, in which each layer is followed by Batch Normal-

ization and RELUs except the last layer. We use the Tanh

Layer Out channels Kernel size Stride Padding

conv1 64 4 × 4 2 1

conv2 128 4 × 4 2 1

conv3 256 4 × 4 2 1

conv4 512 4 × 4 2 1

conv5 512 4 × 4 2 1

conv6 512 3 × 3 2 0

conv7 512 3 × 3 2 0

Table 3. The architectures of encoders ffg
pose, f

fg
img , f

bg

fg and f
bg
img .

Layer Out channels Kernel size Stride Padding

deconv1 512 3 × 3 2 0

deconv2 512 3 × 3 2 0

deconv3 512 4 × 4 2 1

deconv4 256 4 × 4 2 1

deconv5 128 4 × 4 2 1

deconv6 64 4 × 4 2 1

deconv7 64 4 × 4 2 1

conv8 64 3 × 3 1 1

conv9 3 3 × 3 1 1

Table 4. The architectures of decoders f
fg

dec and f
bg

dec.

units as the nonlinearity activation for the last layer.

5. Conclusion and Future Work

In this paper, we propose a pose-based human image

synthesis method which can keep the pose unchanged in

novel viewpoints. We also propose multistage adversari-

al losses during model training, which contribute a lot to

generate rich image details. With extensive experiments on

the Human3.6M dataset, we verify the effectiveness of our

model.

As can be seen, in this paper we focus on human im-

age synthesis and do not apply the results on other visual

tasks. In the future, we will further improve the image qual-

ity and apply the generated images on various visual tasks,

e.g. cross-view gait recognition and person re-identification.
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